Discipline: Civil Electrical, ETC Mechanical Engg.	Semester: $\mathbf{2}^{\text {nd }}$	Name of the Teaching Faculty: RAMAKANTA BEHERA (Lect. in Mathematics)
Subject: Engg. Math-II	No. of days/week class allotted: 6P (5 Lectures +1 Tutorial)	Semester from date: To date: No. of weeks: 16
Week	Class Day	Theory Topics
$1^{\text {st }}$	$1{ }^{\text {st }}$	Chapter 2: LIMITS and CONTINUITY: a) Definition of a function (Based on set theory) b) Types of functions i) Constant function, ii) Identity function iii) Absolute value function iv) The Greatest Integer Function
	$2^{\text {nd }}$	v) Trigonometric function with example vi) Exponential function vii) Logarithmic function With examples
	$3{ }^{\text {rd }}$	c) Introduction of limit: definition ,example d) Existence of limit with example
	$4^{\text {th }}$	e) Methods of evaluation of limit
	$5^{\text {th }}$	Methods of evaluation of limit continues with some examples
	$6^{\text {th }}$ (Tutorial class)	Problems on existence of limit and evaluation of limit
$2^{\text {nd }}$	1st	i) $\lim _{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a}=n a^{n-1}$ ii) $\lim _{x \rightarrow 0} \frac{a^{x}-1}{\bar{x}}=\ln a=\log _{e} a$ Some problems using these formulae
	$2^{\text {nd }}$	iii) $\quad \lim _{x \rightarrow 0} e^{x}-1 \quad x=1$iv) $\quad$$\lim _{x \rightarrow 0}(1+x)^{\bar{x}}=e$ Some problems using these formulae
	$3{ }^{\text {rd }}$	
	$4^{\text {th }}$	vii) $\begin{aligned} \lim _{x \rightarrow 0} \sin x^{x} & =1 \\ \text { viii) } \quad \lim _{x \rightarrow 0} \tan _{x} & =1 \text { Some problems usingthese }\end{aligned}$

	formulae	
	$5^{\text {th }}$	f) Definition of continuity of a function at apoint, Existence of continuity with example
	$6^{\text {th }}$ (Tutorial class)	Problems on limit and continuity
$3^{\text {rd }}$	$1^{\text {st }}$	Chapter 3: DERIVATIVES: a) Derivative of a function at apoint b) Algebra ofderivative
	$2^{\text {nd }}$	c) Derivative of standard functions: $x^{n}, a^{x}, \log x, e^{x}$
	$3{ }^{\text {rd }}$	Derivative of standard functions continues: $\sin x, \cos x, \tan x$
	$4^{\text {th }}$	Derivative of standard functions continues: $\cot x, \sec x, \csc x, \sin ^{-1} x$
	$5^{\text {th }}$	Derivative of standard functions continues: $\cos ^{-1} x, \tan ^{-1} x, \cot ^{-1} x$
	$6^{\text {th }}$ (Tutorial class)	Problem solving on trigonometric functions
$4^{\text {th }}$	$1{ }^{\text {st }}$	Derivative of standard functions continues: $\sec ^{-1} x, \csc ^{-1} x$, d) Derivatives of compositefunction
	$2^{\text {nd }}$	Derivatives of composite function(Chain rule) continues with examples
	$3{ }^{\text {rd }}$	Derivatives of composite function(Chain rule) continues with examples
	$4^{\text {th }}$	e) Methods of differentiationof i) Parametric function withexamples
	$5^{\text {th }}$	Methods of differentiation of ii) Implicit function withexamples
	$6^{\text {th }}$ (Tutorial class)	Solving problems on derivatives of parametric function and implicit function
$5^{\text {th }}$	$1^{\text {st }}$	Methods of differentiation of iii) Logarithmic function withexample
	$2^{\text {nd }}$	Methods of differentiation of iv) A function wrt another function withexample
	$3{ }^{\text {rd }}$	f) Applications ofderivatives: i) Successive differentiation (up to second order) Some problems on successivedifferentiation
	$4^{\text {th }}$	Solving problems on successive differentiation
	$5^{\text {th }}$	ii) Partial differentiation (function oftwo variables up to second order)
	$6^{\text {th }}$ (Tutorial class)	Problems on derivative of logarithmic function and successive differentiation.
$6^{\text {th }}$	$1^{\text {st }}$	Partial differentiation continues
	$2^{\text {nd }}$	Some more problems on partial differentiation
	$3{ }^{\text {rd }}$	Revision of derivative
	$4^{\text {th }}$	Chapter 4: INTEGRATION:

		a) Definition of integration as inverse ofdifferentiation b) Integral of standardfunctions
	$5^{\text {th }}$	c) Methods ofintegration: i) Integration by substitution withexamples
	$6^{\text {th }}$ (Tutorial class)	Problems on integration by substitution
$7^{\text {th }}$	$1^{\text {st }}$	ii) Integration by parts withexamples
	$2^{\text {nd }}$	Problems on integration by parts
	$3{ }^{\text {rd }}$	d) Integration of the following forms
	$4^{\text {th }}$	Integration of the followingforms $x-a$ v) $\begin{aligned} & \int \frac{d x}{\frac{d x^{2}}{x^{2}}} \text { vi) } \int \frac{{ }^{2}{ }^{2}}{} \text { vii) } \\ & \int \frac{\square d x}{x \sqrt{x^{2}+a^{2}}} \\ & \text { examples } \end{aligned}$
	$5^{\text {th }}$	Integration of the following forms ix) $\left.\sqrt{a^{2}+x^{2} d x} \mathbf{x}\right) \sqrt{x^{2}-a^{2} d x}$ with problems
	$6^{\text {th }}$ (Tutorial class)	Problems on integration by parts
$8^{\text {th }}$	$1^{\text {st }}$	e) Definite integrals andproperties i) $\quad \int_{0}^{0} f(x) d x=\int_{b} f(\underset{a}{a-x)} d x$ ii) $\quad \int_{a}^{a} f(x) d x=-\int_{\substack{b \\ b}} f(x) d x$
	$2^{\text {nd }}$	iii) $\quad \int_{a}^{c} f(x) d x=\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x, a<b<c$ $\int_{-a}^{a} f(x) d x=0, \text { iff }(x)=o d d$ iv) $\quad=2 \int f(x) d x$, if $\quad f(x)=$ even With examples
	$3{ }^{\text {rd }}$	Solving problems on properties of definite integration
	$4^{\text {th }}$	f) Application ofintegration

		i) Area enclosed by a curve and X-axisand example
	$5^{\text {th }}$	ii) Area of a circle with centre atorigin
	$6^{\text {th }}$ (Tutorial class)	Solving problems on application of integration
$9^{\text {th }}$	$1^{\text {st }}$	Chapter 5: DIFFERENTIAL EQUATION: Definition, ODE, PDE, a) Order and degree of a differential equation
	$2^{\text {nd }}$	Determining Order and degree of a differential equation with examples
	$3{ }^{\text {rd }}$	b) Solution of differential equation Definition i) By method of separation of variable withexamples
	$4^{\text {th }}$	method of separation of variable continues with problem solving
	$5^{\text {th }}$	Some more problems on separation of variables
	$6^{\text {th }}$ (Tutorial class)	Problems on determination of degree and order of a differential equation
$10^{\text {th }}$	$1^{\text {st }}$	ii) $\begin{aligned} & \text { Linear equation } \\ & \text { example }\end{aligned}$
	$2^{\text {nd }}$	$d y$ Solvinglinearequation $\quad _+P y=Q$, where P, Qare $d x$ functions of x
	$3{ }^{\text {rd }}$	Problems on linear differential equation
	$4^{\text {th }}$	Some more Problems on linear differential equation
	$5^{\text {th }}$	Revision of differential equation
	$6^{\text {th }}$ (Tutorial class)	Revision of differential equation
$11^{\text {th }}$	$1^{\text {st }}$	Chapter 1: VECTOR ALGEBRA: a) Introduction: definition of scalar, vector with examples b) Types of vectors: null vector, parallel vector, collinear vectors withexamples
	$2^{\text {nd }}$	c) Representation of a vector
	$3{ }^{\text {rd }}$	d) Magnitude and direction of vectors with examples
	$4^{\text {th }}$	e) Addition and subtraction of vectors with examples
	$5^{\text {th }}$	Properties of vector addition and position vector
	$6^{\text {th }}$ (Tutorial class)	Problems on magnitude and f) positionvector
$12^{\text {th }}$	$1^{\text {st }}$	g) scalar product of two vectors with examples
	$2^{\text {nd }}$	h) Geometrical meaning of dot product
	$3{ }^{\text {rd }}$	Problems on dot product
	$4^{\text {th }}$	i) Angle between two vectors withexample
	$5^{\text {th }}$	j) Scalar and vector projection of two vectorswith examples
	$6^{\text {th }}$ (Tutorial class)	Problems on Scalar and vector projection of two vectors

$13^{\text {th }}$	$1^{\text {st }}$	k) Vector product and geometrical meaning
	$2^{\text {nd }}$	Problems on vector product
	$3{ }^{\text {rd }}$	Revision
	$4{ }^{\text {th }}$	
	$5^{\text {th }}$	
	$6^{\text {th }}$	
$14^{\text {th }}$	$1^{\text {st }}$	Previous year question discussion
	$2^{\text {nd }}$	
	$3{ }^{\text {rd }}$	
	$4^{\text {th }}$	
	$5^{\text {th }}$	
	$6^{\text {th }}$	
$15^{\text {th }}$	$1^{\text {st }}$	Previous year question discussion
	$2^{\text {nd }}$	
	$3{ }^{\text {rd }}$	
	$4^{\text {th }}$	
	$5^{\text {th }}$	
	$6^{\text {th }}$	
$16^{\text {th }}$	$1{ }^{\text {st }}$	Previous year question discussion
	$2^{\text {nd }}$	
	$3{ }^{\text {rd }}$	
	$4^{\text {th }}$	
	$5^{\text {th }}$	
	$6{ }^{\text {th }}$	

Learning Resources:

1. Elements of Mathematics_Vol-1 \& 2 (Odisha State Bureau of Text Book Preparation \&Production)
2. Mathematics Part-I \& Part-II Textbook for Class XII, NCERT Publication
3. Text Book Of Engg. Mathematics Part-II (Kalyani Publication)
